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ABSTRACT

Pointwise bounds of a bivariational nature are derived on the solution of a standard
fredholm integral equation of the second kind, with a symmetric kernel. The bounding
functionals involve two trial vectors, one approximating the solution and the other ap-
proximating the reciprocal kernel. Even with the latter taken as the null vector, there
is significant improvement over a previous approach. It is shown how suitable choices of
trial vector lead to expressions for bounds on Neumann, Padé and Fredholm approximations.
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Work Unit Number 1 - Applied Analysis
EXPLANATION

It is not often possible to solve exactly an integral equation like

b
¢ (x)+ Afa k(x,y) ¢(y)dy = £(x), a<x<b,

for the unknown function ¢(x) in terms of the known functions £f(x) and k(x,y) (the
‘kernel’ function, symmetric in x and y). So we derive analytical expressions for two

other functions ¢_(x) and ¢+(x) with the property

o_(x') < d(x') < ¢, (x"), a<x'<b,

providing upper and lower bounds on ¢(x') at all points of the interval. The differences

tr(x‘) - ¢(x') and ¢(x') - ¢_(x') have the same kind of size as A 6(x'), where

+ On leave from Bradford University, England.
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D
A= {f, 1000 - ¢(x)1% ax)1/?

and

b

2 142
S(x') = {fd [¥(x,x') - ¥(x,x')]" ax} / ;

Here ¢(x) 1is any approximation to ¢(x), and VY(x,x') is any approximation to the
solution V(x,x') of the equation

Px,x') + A f: K(x,y) Y(y,x*)dy = k(x,x")

There are several ways of finding reasonable approximate solutions to integral
equations, and these can be used to make A and &(x') very small. Thus tight "point-
wise bounds" ¢_ and ¢+ can be obtained on ¢ . Some bounds are evaluated numerically
for a simple integral equation, and found to be very tight indeed. The method can also
be used indirectly to find pointwise bounds on some of the standard analytical ap-

proximations to ¢




POINTWISE BIVARIATIONAL BOUNDS ON SOLUTIONS OF FREDHOLM INTEGRAL EQUATIONS

Peter D. Robinson?

1. Introduction.

In this paper, pointwise bounds of a bivariational nature are derived on the solutions
of a standard Fredholm integral equation of the second kind, with a symmetric kernel. The
method depends on improved bivariational bounds associated with linear equations in a Hilbert
space, and exploits the similarity between the integral equation itself and the equation
specifying the reciprocal kernel. The bounding functionals involve two trial vectors, one
approximating the solution of the integral equation and the cther approximating the reciprocal
kernel. Even when the latter is taken to be the null vector, the bounds refine those which
can be obtained from an approach of Lonseth (1); a simple numerical illustration is given. It
is also shown how suitable choices of trial vector lead to expressions for bounds on approxi-
mate solvtions of Neumann, Padé and Fredholm type.

2. Hilbert Space Formulation.

The pointwise bounds are obtained as instances ot‘complomontary (upper and lower) bi-
varational bounds on the linear product <g,¢> associated with a pair of equations
A = £, ¢, f e H (2.1)
AY =g , v,g € I (2.2)
in a Hilbert space H , A being a self-adjoint operator on ¥. We assume that A 1s strictly
positive and bounded below away from zero, so that for some positive number B
<¢,At> > B <¢,6> for all ¢ ¢ H . (2.3)
Then the inverse operator A-l exists with domain the whole of #. Further, we assume that
A is bounded above, so that for some positive number o
a<¢,6> >< ¢,ad>for all # ¢ ¥, a >8>0 . (2.4)
(The case u + ® is admissible, but means that A is not bounded above; then A 1is merely
defined in X and wherever necessary vectors must be assumed to belong to the domain of BA).
The Fredholm integral equation with real symmetric kernel

6 + 2 [Prx,ye(yay = £x), a<x<b, (2.5)
a

1On leave from Bradford University, England Y
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is identified with (2.1). If ¢(x,y) is the reciprocal (or resolvent) kernel, so that the

relation

b
o) + 2 [ ¥(x,y) fly)dy = £(x), a<x<b, (2.6)

specifies the solution ¢(x) of (2.5), then it is a standard result that

b
Px,x*) + A [a k(x,y) ¢(y,x")dy = k(x,x"), a<x<b, a<x'<b. (2.7)

This equation (2.7) is identified with (2.2). We take for X the real space of square-
integrable functions with inner product
b

<h,.h> = [ hy (x) h,(x)dx, for all h ,h, € X, (2.8)

although it is possible to adapt the theory for complex spaces.

The symmetric kernel k(x,y) is assumed to be of Hilbert-Schmidt type, and describec

a compact, self-adjoint operator K in ¥, so that
¥ A=1+ )K. (2.9)

The reciprocal kernel y(x,y) is also symmetric, and describes the reciprocal operator
I' given by

P o= KCE & AR =k . (2.10)

Both kernels, regarded as functions of x, can play the role of vectors in ¥ . Thus,
taking

g(x) = k(x,x') , (2.11)

it follows from equation (2.5) and the symmetry of k(x,x') that

b
<g.¢ > = [ kixx') $0ax = A7HE(x) - 4x)) (2.12)

Accordingly complementary bounds on <g,¢ > 1lead to complementary bounds on ¢(x'), for
any x' in a<x' <b.

The strict positivity requirement (2.3) places a restriction on the values of the
parameter 1 for which the results will be valid. Since K is compact and self-adjoint,
it follows that for some non-negative numbers M and L,

M<¢,6> ><9,kd> >-1<9%,6> for all & e X . (2.13)

-2e




In theory, the nwbers +M and -I  are respectively the positive and negative eigen-
values of K of greatest magnitude, but in practice they can be taken as the best avail-
able upper and lower bounds to these eigenvalues. Then we assune that

e (2.16)

and take

a=1+2AM, B

1Y e ) () |
(2.15)

1% AL, B

14 AM 9f A <0 .

=3
3

The bivariational bounds derived in §3 below involve the positive constants £
and n defined by

£=306a ™, n=tetah (2.16)

For either positive or negative A, it follows from (2.15) that

L 4 %M=L} L1 oweny
ECTACY, e (2.17)
(1+4AM) (1-2L) * (1+AM) (1-2L) >
3. Complementary Bivariational Bounds
Assocliatcd with an eguation
AS, =nh, 0.h e dC, (3.1)
whose solution € is unknown, are the complementary variational bounds on <h,? >
G, (O:h) < <h,0> < Gg(®./h), for all ® ¢ I, (3..2)
g where
'l 12
, Gg(Oih) = -<@,A0> + 2< h,0> + o [la& -nl| (3.3)
| and
: . Q) " & < =1 2 3.4
} . GB(O:h) == <€,A0> + 2<h 0> 4 B [A@-1]] : ol

i ; 2 . sl <
The norm here is the ucval Hilbert space norm, ” ¢" =<¢,6> . The variational boun:
ing propertics of Ga and G8 follow at once from the identities

- 2
G«((“;h) =< h,0> - a 1<I\1/' 60,((:-7\)A1/2(.G> ; (3.5)

3=




and

Gy (051) = <h,0> 4 6t <a’”? g0, (a-m1a 260> , (3.6)

in terms of the difference~vector 88 =9 - 0, together with (2.3) and (2.4).

.

Consider now the pair of equations
A(sp + tyY) = sf + tg , 3.7} |
Als¢ - ty) = sf - tg , (3.8)

obtained from (2.1) and (2.2), s and t being scalar multiplicrs. If we subtract the

two inner products like <h, 8> which can be bounded as in (3.2) we obtain:

<(sf+tg), (s¢+tyP) >~ <(sf-tg),(s¢-tyY)> = 2st<g, ¢> + 25e<f,y>

3
= 4St<g,‘r> . (3.9)

(The last step follows since <f£,¢> = <A¢, P> = <G AY> = <Lg,q> - <g,4>) . Thus,

from (3.2) and (3.9), we have for all ¢,¥ ¢ IC :
sf + tg; s + tY¥) - G, (sf - Jsel= ) <

G“( f ty tY) S(_f tg D .
< 4st<g, ¢ > g G6(5f+tg;s¢+t‘2’) - Gu(sf—-tg;s‘.d'-t‘i") 5 {3.10)
q The lert-hand and right-hand members of (3.10) reduce to

4st{ <¥,A6> + <y, £> + <q,0>} +
4Est<Ab-f,AY-g> F 2n{s’ [|ae-£ H2 4 E [|n¥-g T T (3.11)

Dpividing (3.10) through by 4|5L‘, and choosing the optimal ratio

It ae-£ll = [e] )l n¥-gll . (3.12)
we obtain the final re. (1t
J(Y,4) + £S(¥,¢) - no(¥,®) < <g,¢> < J(Y,d) + I5(Y,$) + nC(¥,%) (2139
where
J(¥,8) = ~<Y{Ad > + <YV, f> 4 <g,9> = <q,¢> - <&,A> , (3.14)
S(¥,8) = <Ad-f, AY-g> = <A 8, AEG> (3.15)

=




ey, =|las-all || av-cff = || asel) )| nsell (3.16)
and
Sp=0-¢ €I, Sp=vy-¢ ¢ & . (3:17)

The expression of the functionals J, S and C in terms of the difference-vectors (3.17)
makes clear the bivariational nature of the bounds in (3.13). They are tighter than others
previously obtained [2] by exploiting the identity

Cers b o), SBE B NS =SS - RGNS = 2> (3.18)

rather than (3.9); see also [3].

4. Application to the Integral Equations

When applied to the pair of integral cquations (2.5) and (2.7), the functicnals in

(3.13)-(3.16) take the forms

x'l{f(x') - d(x*) )} - <8¢, 1 + XK)&>

J(x') =
b b

= - [ YOux') (09K ) - £ ddx 4 [ k(x,x') eladx (4.1)

S(x') = <(1+XK)§4, (L+xx)8y>
b
= [, {aox) 000 - £60H AR ¥oax) - kGxDlax (4.2)
and

c(x') =|l(1+kx)6¢”}{(1+kx)5¢“x

1/2 72

b b
(J, tanree) - £(x) ) ax) J (as)yonxt) - KOx,x) Y ax]

(4.3)

Whenever there is ambiguity, the opcrator K is understood to act on the first argumant

of the subscguent function, so that

b
KY(x,x') = ]a k(x,y) Y(y,x")dy . (4.4)

Substituting from (2.12) into (3.13), we obtain the pointwice hounds

¢+(x') L A0 B TR 4 IR a<x'<h, (4.5)

where
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o, (x") = £(x') - Ma(x') + £5(x")} + [A[n c(x') (4.6)
and

¢_(x*) = £(x") - AMa(x") + gs(x")} -|Aln c(x") . (4.7)

The functions &(x) and VY(x,x'), which determine J(x'), S(x') and C(x'), are

~ intended to be approximations to the exact solutions ¢(x),k399,”w‘x'x') of equations (2.5)
and (2.7). The upper bound ¢*(x') can be minimized with respect to any disposable param-
eters in ¢ and ¥ (for example multipliers of some set of basis vectors), and likewise
¢_(x') can be maximized. Thus we have a method for determining accurate bounds on ¢(x');
an example is presented in §5.

A simpler alternative procedure is to forego individual optimization of ¢* and

¢_, and write (4.5) in the form
0 < lo(x") - [£(x") - Max") + Es(x)N < [A|n cx) . (a.8)

This gives a pointwise measure of the accuracy of the function

$(x') = £(x") - MJI(x') + &s5(x")} (4.9)
as an approximation to ¢(x') . Disposable parameters might then be chosen to minimize the
st~squares" function C(x') . Bounds on various analytical approximations to ¢, such

Neumann, Padé and Fredholm approximations, can also be obtained from (4.8). By
iitable choice of the trial vectors ¢ and VY it is possible to coax f£(x') - AJ(x') into

the form of one or other of these approximations. [See §6 below].

5. Simple Trial Functions

Sensible results are obtained from the foregoing theory even with the uninformed
choice of trial functions which are identically zero. When both ¢(x) = 0 and V¥(x.x') = 0,

(4.8) gives rise to the pointwise bounds

0 < |é(x") - (£(x*) - AgkE(x*)1] < |a|nlle ]| ”k(x,x')“x. (5.1)

With zero Y¥(x,x'), but arbitrary ¢(x), (4.6) and (4.7) become

$,(x') = £(x') ~ AKO(x') + AK{®(x') + Mkb(x') - £(x"))} + |Anlanwe - £

. !
el (s.2)




|
|
|
| /
Lonseth (1) has in effect pointed out that in any casc ¢(x') lies between
£(x') - Ako(x*) £ [alll seff (i };(x,x‘)“x ; (5.3) |
bounds on the Hilbert space norm ” 6¢” then lead to pointwise bounds on d(x') . Using ;
(2.3), these would be ‘
-
fix") - axe(x) + BT lanwe - £] ] k(x,x')Hx (5.4) ;
with B8 given by (2.15), which is evidently a coarscr result than (5.2) since P-l > .21
from (2.16).
If ¢(x') is taken as cf(x') in (5.2), and the factor c¢ is optimized to give
the best upper and lower bounds, these turn out to be
7 2 2,1/2 -
(] — 1 e ! 4 o0 -En [ X o5
¢, (x") 0o x") u P (x*') “2(“" ) px") ") _ (5.5)
where
¢0(x )} = £(x') = AREKE(x") ,
t 2.2 - '
plx') = ELR + YK} £(x') - NILE (M),
rx') =] ol |l )k“x ; (5.6)
: _<EOBD >
1 2
|| ek £
5 2 2
2 [L£ 1l < £, (14)K) £
25 e ST T
fosxef” | aoxrl i
But in order to expoit fully the pivariational nature of the pointwise bounds in (A3 i

(4.7), the crude choice Y(x,x') = 0 must be relaxed. If we choose
$(x') = cf(x'), Y(x,x') = dki(x,x") (5.7)

in (4.1)-(4.3), and simultancously determine ¢ apd 4 in each case to optimize tho boui.ss
(4.6) and (4.7), these hecome

2 (p—qnl) (p—qvl)tz

t P
o, = b, + - - : \#e 8
- - 2. 2
S qtt’-q%)
t 2 &, 2 2 2 2 2 ) 2yl
2 > {(t"=q )y, - (17--<}ul) ]1/ {(t -qz)v; -~ (p-qv,) Y
t o= 1

_7_




Here, in addition to (5.6), we have used the notation

-
q(x') = E(Ak + 2/\2x2 C A3x3)f = (g + x2x<2) £,
t(x") = nlla+x)£]] || Ak +)\2k2||x X ;
<ok >
v, (x*)= .
1 2 02 ; ? (5.9)
J| Ak +x kzl] o
i | ax lli <Ak Ak + A2k2>2
v, "= LT = s
|| Ak +x K, || Ak +a k2l|x

wherein kz(x,x') is the second iterated kernel. ]
Lonseth [1] considered the example

&
$x) + [ k(xy) ¢(y)dy = x°,  0<x <1,

(5.10)
k(x,y) = x(1-y) if x <y, k(x,y) = y(Q-x) if x >

for which

_Y}
2 -2 ﬂ2+l/2 1/2
| f(x)=x,X=1,M='n,L=O,€=—-5_——'n=—2—"'
™ +1
(5.11)
x* (1-x')
| V3

. 3 6
| Kf(x) = %2—— . Kzf(x) _ Ax-5x74x

360 ¢ kel =

The crude bounds in (5.1) give

4
>4 (L =
0 < |$(x') ~ [x'2 = gx—l—’%——)—l < (15) H mxt (=% 0 S % <1 . (5.12)
At x' = 1/2, the least accurate value, this shows that
0.21225 < ¢(1/2) < 0.21819 . (5.13)

The bounds (5.5), with & proportional to f and VY zero, give

0.21704 < ¢(1/2) < 0.21723 , (5.14)

whereas following lLonseth's approach via (5.4) one obtains only

0.21292 < ¢(1/2) < 0.21740 (5.15)




with the same type of ¢ . Finally, with ¢ proportional to f and Y proportional to
k, the more sophisticated bounds (5.8) yield the accurate result

0.217047 < ¢(1/2) < 0.217048 . (5.16)
The integral equation (5.5) can be solved exactly if it is converted into a differential
equation, and in fact

$(1/2) = sech(1/2) - 2 = 0.2170472 . (5.17)

TR,

6. Bounds on Analytical Approximations

6.1. The Neumann approximation

Let us make the choice of trial ve-tors

®(x) = °n(x), ¥Y(x,x') = Wm(x,x'), n,m = 0,1,2. .. (6.1)

in the functionals (4.1)-(4.3), where

Qo(x) =0,
S e (6.2)
¢ (x) = {1 - XK +2%k" + ... + (=) T} £(x), n2>1,
and
Vo(x,x') = 0 ,
T e N 2 2 Sl §
Wm(x,x ) = {1l - X + XK + ... + (-X) E kiext), w0y, (6.3)
= k(x,x') = Ak, (x,x") + A%k, (%,x") ... + (0™ k_(x,x')
’ 2 ’ 3 ’ m ’ r
the functions k2 . aie km being the iterated kernels (k1 = k) . This choice leads to the
expressions
J(x') =0, m+n=0,
m+n-1 5
J(x') = {1 - X + ... + (-X) } Kf(x'), m+n>1,
s(x") = (3™ ke(x") (6.5)
and
¥ = m+n n H i
c(x') = [a] "]l |l Ky (o )||x : (6.6)

From (4.8), (4.9) and (2.17), these results indicate that the Neumann-type approximate

solution

m+n+l

$lx') = {1 = XK + oov + (=2)™ 4 £(-X) } £fix'), a<x' <b, (6.7)

is in error by not more than




T " ——— p—— . - T o G nin g iy 2

1
5(M4 L)

mtn+2 R . . '
l -TI?XFD]E:7JJVI|L fHl Knpp (% )”x : t6-0)

+ |
The relation (2.6) connecting ¢(x) and {(x,y) indicates that n = m+l is a sensible
3 condition to impose¢, but the maximum error in (6.8) holds good for arbitrary n and

6.2. The [N/N] Padé approximant

Consider trial vectors of the form

N-1
o(x) =] a K (x) (6.9)
n=0
_ N-1 o N-1
¥(x,x") =) b. K kGox') =) b k. _(xx') ., (6.10)
* n 2 n ntl
n=0 n=0

where the a and b are disposable constants. The functional J(x') in (4.1) dis
n n

5 " Wy ; ; =] o

itself a bivariational appreximation to X “{f(x') - ¢(x')} ., and so it is rot un-

reasonable to choose the constants a and bn to make J / with recpect to
n

variations in them. TIf this is done, the function {f(x')- AJ(x')} can be identificad

the ([N/N] Padé approximant to ¢(x') in powers of X, constructed directly from th

Neunmann Series. Chisholm [4] has suggested this sequence of approximations to !  as
alternative to the Fredholm ones, and has proved a convergence result for them. The :
thecory of the present paper gives bounds on them, via (4.8), verifying their accuracy (o
2N+1
order A 5 .
If we use the notation
n
fn(z) = K f(x) £6:11)
and denote by AN the array
4 4 S :
(fl Afz) (f2 Xf3) (fN + AfN+1)
S s A wie w = G.12
(i'2 lfg) (13 )fd) (£N+l + AfN+2) v (G: 12}
+ f + ) + Af
(fN ArN+l) ( N+1 AfN+2) (I?N-l ZN)
then the functionals J(x'), S(x') and C(x') can be writicen as ¢
r
AN

- g e Y e e ¥ R T T




£,(x")
[P = » + ' T
J(x") : b, (x") |AN(x ) | (6.17)
L}
fN(x )
and
2
[ = B - \ ' =5 . = ) 4
c(x*) = || QN£|| 1 2,k e )||x, S(x') = 8 KE(x') (6.14)
where the operator QN is specified by
1 fl(x ) T fN(x )
K £L00°F  cwn E AR
_ N : : - B \ &
2, = A : : : |r.N(x s (6.15)
N ) ’
K fol(x ) fZN(x )

(cf. Barnsley (5}). We note that when k({x,x") is a degenerate ernel of order N, tlic
rows of the numerator-Geterminant in (6.13) are linearly dependent, and <o
the null-operator. Accordingly the [N/n] Padé arprozimant to ¢ is exact [4].

Bounds on other types of Padé approzimant coen be obtaincd by modifying thce powors

of K in (6.9) and (G.10) (c¢f. 6).

6.3. The Fredholm approximation

One choice of trial vectore which leads to bounds on the nth Fredholm appr inat
is
B 4AE +. . .H“'lzn_l
®(x) = NPT T ST £6x) + niE Ay 25 ess (6.16)
+ +...F% d
do Ad1 a,
¥i{x) = 0,
where
Eo =1, E = dmI KEn_l, me=1, 2,
mn (6.17)
r+l
= nd o= d - no= e
& oy md w ] A I m=1, 2,
r=]1
«]]=




and tt is the rth trace of the kernel k(x,x') . The operators Em are polynomials
in X, and KEm has as kernel the classical Fredholm minor; the numbers dm are the
classical Fredholm determinants ([7,8].

With the choice (6.16), f(x') - AJ(x') is actually the nth Fredholm approxi-

mation to ¢(x'), and we obtain the expressions

J(x') = Kd(x') ,
c(x') = AL = llaa - xr:n_l)fll Il xex, x|l (6.18)
|a +2a +...+A"a_| L X
0 1 n
and

A"KE_f(x')

S(x') = ~——"————n— . (6.19)

‘ d0+xd1+...+x dn

Similar results can be obtained for the modified Fredholm approximation should the {

first trace tl be infinite.

7. Nonsymmetric Kernels

If k(x,y) is not symmetric, then the operators K and A = I + AK are not
self-adjoint. However, if A 1is still bounded below away from zero in the sense that

laell >vllell. y>o0, forall ¢ e, (7.1)

the bivariational bounds

304,0) - v Hlao-£]| | A"¥-gll < <g.6> < 3¥,0) + v Lae-g]l [[a ¥-g] (7.2)

* * *
can be derived, A =1 + Ak Dbeing the adjoint of A . When A = A , these bounds are

coarser than those in (3.13). Whenever (7.1) holds, it is possible to infer pointwise

bivariational bounds on ¢(x') by taking g(x) = k(x',x), although the special role
played by equation (2.7) specifying the reciprocal kernel is lost. 1In (7.2), Y(x,x')

would not now approximate the reciprocal kernel of k(x,x'), but rather that of k(x',x) .

T ———————— ——

Details are given elsewhere [9].
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